

Plans and Logs

APlan For Controlling Variation
 During Production –

By Mario Perez-Wilson

Positrol Plans and Logs

- A Plan For Controlling Variation During Production-

Mario Perez-Wilson

President Advanced Systems Consultants

Positrol Plans and Logs

- A Plan For Controlling Variation During Production -

For books, software, public seminars, in-house training seminars, and consulting services

Advanced Systems Consultants Post Office Box 5257 Scottsdale, Arizona 85261 U.S.A.

Phone: (480) 423-0081

www.mpcps.com

POSITROL PLANS AND LOGS

Copyright © 1996, by Mario Perez-Wilson.

All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from Advanced Systems Consultants.

Current Printing (last digit) 10 9 8 7 6 5 4 3 2

PRINTED IN THE UNITED STATES OF AMERICA

ISBN 1-883237-15-7

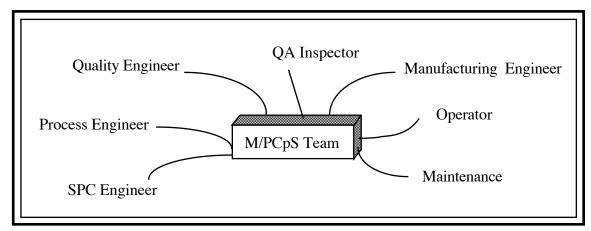
Table of Contents

Positrol
Positrol Description
Positrol Plan
What important characteristics are entered in the Positrol Plan
Response Variables
Independent Variables
Setup Requirements4
Preventive Maintenance Requirements4
Replenish Materials5
Specification Limits
How will the important characteristics be measured?6
Instructions6
Procedures6
Gauges6
Check (Visual) Inspection
Statistical Test
Specification Limits
Who is responsible for controlling the characteristics?8
When will the characteristics be measured?9
What controls will be used for the characteristics?
Who develops the Positrol?
Which process should be under Positrol?
Construction of Positrol Plans
Electronic Pager - Solder Paste Screen Printer
1st. Stage: Process Characterization
2nd. Stage: Metrology Characterization
3rd. Stage: Capability Determination

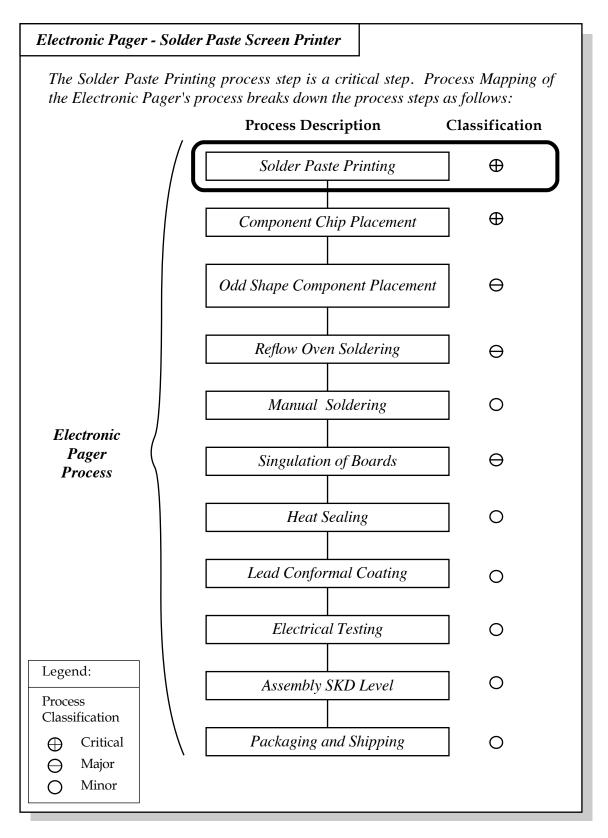
Table of Contents continuation

4th. Stage: Optimization			 24
Exp #1 - Test PCB's Difference wi			
Exp #2 - Test Difference in Solder	Paste Height within	in PCB's	 27
Transfer Knowledge to the Positro	l Plan		39
Response Variables			 39
Independent Variables			 41
Setup Requirements or Work Stand	dard		 43
Preventive Maintenance Requireme	ents		 44
Examples			 48
Corfin Automatic Tinning - I	Positrol Plan		 48
Wafer Back Grinder - Positro	ol Plan		 49
Axial Inserter - Positrol Plan			 50
Wave Solder - Positrol Plan			 51
Mix Meter - Positrol Plan			 53
AMS 1000 - Positrol Plan			 55
Nitride Deposition - Positrol	Plan		 57
Positrol Logs			
Positrol Logs Description			
Response Variable			
Independent Variable			
Specification Limits			
Frequency of sampling			
Traceability Information			
Construction of Positrol Logs			
Solder Paste Screen Printer - Posit			
1			
Axial Inserter - Positrol Log			
Automatic Wave Solder - Po	C		
Corfin Automatic Tinning - I	_		
AMS-1000 Oxide Depositio			
Nitride Deposition Furnace -	_		
Wafer Back Grinder - Positro	ol Log		 72

15. Positrol Log


The Positrol Log is a checksheet in which production personnel enters data, information or observations from the distinctive characteristics of the process. The positrol log provides traceability of the changes in the characteristics of the process. It also specifies the limits of those characteristics and reactions when not within the prescribed limits.

16. Concentration Diagram


A concentration diagram is a graphical technique that concentrates the frequency of occurrence of defect as they appear physically in the product. The diagram is a picture representing the product and it shows the location where defects appear repeatedly.

Who develops the Positrol?

The Positrol is developed by a process characterization team (M/PCpS Team) during the last stage of the machine/process characterization study. It is usually the last thing done since it requires a considerable understanding of the process to know which are the distinctive characteristics that must be controlled. This team is usually comprised of process engineers, operators, technicians, maintenance personnel and other engineers from varied fields. Since the Positrol's main use would be in production, the operators should play an important role in its development. Since most of the monitoring and control of the process falls under the responsibility of the operators, they should check that all of the control systems are easy to implement during production. Once the M/PCpS Team has finished designing the Positrol plan, it is the responsibility of the production supervisor to approve it as a buy-off into production.

Members of a typical M/PCpS Team.

Electronic Pager - Solder Paste Screen Printer

To determine how much of an improvement we can expect to see in the solder paste screen printing process, we proceed to run a large sample with the process at its best levels.

> Squeegee Pressure 25 psi

Squeegee Hardness 80 durometer Squeegee Speed 2 inches/sec Snap-off height 0.040 inches

Results:

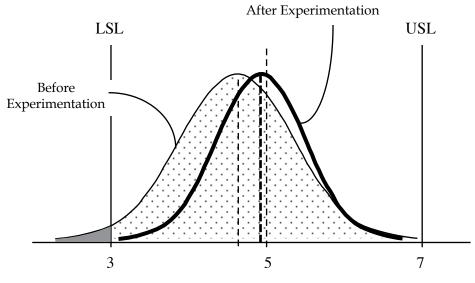
Descriptive Statistics

 $\overline{X} = 4.92$

S = 0.63

R = 0.90

 $\zeta = 0.25$


 $\kappa = 2.86$

Cpk = 1.02

Cp = 1.06

Normality = Yes

Solder Paste Height

Positrol

The Solder Paste is a cream mixture made of 63/37 tin-lead and flux. Its texture should be smooth, without lumps or crusts on the surface. The paste should not show any separation of the flux from the solder balls. The solder paste should retain its stenciled definition after drying. And its viscosity should be between 800,000 and 1,000,000 centipoise to be suitable for screen printing and ease of dispensing.

The WHAT is a Solder Paste Viscosity of $900,000 \pm 100,000$ centipoise. The HOW is a Brookfield Viscometer to measure the viscosity of the paste. The **WHO** is the process technician and the WHEN is at the start of each shift. The measurement of viscosity is then entered into a Moving Range (MR) chart for **CONTROL**.

Other material properties that should be controlled during production are the smoothness in texture and the lack of lumps in the paste. Visual inspection should be used to check the solder paste for these properties.

Page 2 of 2	+ Solder Paste Screen Printing • Positrol Plan					Date y No.	10-Jul-94 129-8-1			
	Process Equipment / Tool			Stud	FME	Yes				
Solder Screen Printing			MPM			r wie	X No			
Distinctive Characteristics PM										
What	Preventive Maintenance		terials er Paste							
How	PM Check L	st l	scosity ± 100k)							
Who	PM Technician		okfield ometer							
When	Per PM Schedule	(cen	tipoise)							
Control	PM Check Li	at	ocess nician							
			t-up of n shift.							
		MR	Chart							